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Mathematics in science

Promoting the understanding 
of mathematics in physics 

at secondary level
Alaric Thompson

ABSTRACT  This article explores some of the common mathematical difficulties that 11- to 16-year-
old students experience with respect to their learning of physics. The definition of understanding 
expressed in the article is in the sense of transferability of mathematical skills from topic to topic 
within physics as well as between the separate sciences and mathematics. It is argued that students 
who are taught the reasoning behind the processes are less likely to compartmentalise their 
learning. Some strategies, particularly concerning the language of mathematics, are discussed.

What is it to understand the mathematics?

‘Knowledge’ and ‘understanding’ are words that 
are so ubiquitous in education that it is easy to 
lose sight of their individual meanings and of 
their importance to learning. There are many 
possible meanings for these words depending on 
the context and many learned authors have written 
about just that. However, my intention here is to 
explore the importance of ‘understanding’ when 
learning mathematical aspects of physics (and 
science in general).

Let us first take the meaning of ‘know’ to 
be ‘is able to recall’ and then take the following 
description of ‘understanding’ for the discussion 
that follows:

. . . understanding in mathematics implies 
an ability to recognise and make use of a 
mathematical concept in a variety of settings, 
including some which are not immediately 
familiar. (Cockcroft, 1982: 68)

Consider the following, which is intended 
to exemplify the difference between knowledge 
and understanding, not just for the purposes of 
discussion in this article but also as an example to 
be used with students. The programme of study 
for 11- to 14-year-olds in England states that 
children should be taught to calculate and solve 
problems involving areas of circles (Department 
for Education, 2013a: 8). The mathematics subject 
content for 14- to 16-year-olds in England states 

that students should know the formula for finding 
the area of a circle and be able to calculate areas 
of circles (Department for Education, 2013b: 10). 
The intention here is for students to understand 
why a single formula can be applied to all circles 
whatever their size.

It is a simple exercise to demonstrate. Students 
draw a circle using compasses, choosing the 
radius of the circle themselves. They then cut 
a piece of string whose length is equal to the 
diameter. The string is laid out carefully along 
the circumference and the number of times that 
it fits along the whole circumference is measured 
(Figure 1). (This can also be a useful exercise in 
ratios as the remainder will need to be calculated 
as a proportion of the length of the string.)

The students will still only ‘know’ that the 
number of times the diameter fits around the 
circumference is around 3.14, a number we call π, 
but, by comparing their results to those of the rest 
of the class whose circles will have been different 
sizes, they can come to ‘understand’ that the ratio 
of circumference to diameter is always 3.14 : 1. 
They can see that what they have come to know 
about one circle is transferable to all circles. From 
here, students can go on to see how the formula 
for the area of a circle can be demonstrated and 
that the formula applies to all circles, whatever 
their size (Figure 2).

It could be argued that once students have 
followed this method for showing that the area 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/SECONDARY_national_curriculum_-_Mathematics.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/SECONDARY_national_curriculum_-_Mathematics.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/254441/GCSE_mathematics_subject_content_and_assessment_objectives.pdf


44	 SSR  March 2016, 97(360)

of a circle is πr2 they will still not necessarily 
‘understand’ but simply ‘know’ a method for 
demonstrating the fact. However, it is not the 
specific process that is important; it is the fact that 
the rule can be applied to all circles of all sizes 
that is crucial.

If students are to apply a single mathematical 
principle in a variety of contexts, they must 
understand the universality of the principle. This 

is such an important point but it is often lost on 
students, who tend to compartmentalise their 
learning. The phrase ‘transferable’ is given to skills 
that can be applied across a variety of subjects and 
contexts and teachers are often frustrated when 
they hear that students ‘can do it’ in maths but 
‘can’t do it’ in physics, or ‘could do it when we 
studied energy but can’t do it with forces’.

My argument is that focusing on understanding 
the transferability of the skills, rather than just on 
the processes that will get the right answer in an 
isolated context, is crucial to student progress.

Let us take the example of percentages. 
Students will use percentages in many non-science 
subjects as well as maths and of course all three 
sciences. Looking at a specific example from 
physics, students might well be asked to calculate 
the amount of thermal energy lost from a house 
through the windows as a percentage of the total 
amount of energy lost in a specified time. Giving 
the students a process for this particular problem 
will allow them to succeed in this specific context:
1	 Find the total energy lost by all methods from 

the house.
2	 Divide the energy lost through the windows by 

the total energy lost through the whole house.
3	 Multiply your answer by 100 and don’t forget 

to include the % symbol.

This is fine to an extent but it assumes that 
either the students already understand what a 
percentage is or, worse, it implies that students 
do not need to understand percentages provided 
that they can follow this process and get the right 
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Figure 2  Demonstrating that the area of a circle is given by πr2. Students cut their circles into sectors and lay 
them out as shown. The smaller the sectors are, the closer the shape is to being rectangular. The long side 
of the rectangle is made from half of the circumference of the circle which is ½ × π × d = π × r. The short side of 
the rectangle is r and so the area of the rectangle (and therefore the circle) is π × r × r.

Figure 1  Finding the ratio of circumference to 
diameter. The string is cut to the length of the 
diameter of the circle and then carefully laid around 
the circumference. Students calculate how many 
times the string fits around the circumference and 
no matter how big their circles are it will always be 
approximately 3.14.
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answer. The problems start when the students 
are later asked to find the percentage of the 
total background radiation that is contributed by 
cosmic rays (for example).

If the students understood percentages 
when they were considering energy loss from 
the house then this new context should be no 
problem, but if they have not understood then they 
need a whole new process that applies only to 
background radiation.

Exploring the language of mathematics

I find that a useful approach to many 
mathematical concepts is to explore the language 
of the maths in more detail. Breaking up the 
word percent into ‘per’ and ‘cent’, meaning ‘for 
every’ and ‘one hundred’ respectively, can be 
most instructive and using different but equivalent 
sequences of words can clarify the principle. 10 
percent means 10 for every 100. 15 percent of the 
energy lost from the house is through the windows 
means that 15 joules of energy is lost from the 
windows for every 100 joules lost from the house.

Even exploring the percent sign can be 
instructive. The mathematical shorthand for 
‘per’ is the solidus (/). Students brought up in 
the internet age may refer to this symbol as the 
‘forward slash’ but we should emphasise that the 
solidus is not simply a separator, which is the 
role of the forward slash in an internet URL. The 
percent sign comprises the two zero digits of the 
number 100 straddling the solidus and gives an 
insight into the meaning ‘per 100’.

Students may well recognise that ‘per’ also 
appears in the units used (particularly) in physics. 
I find that this can be confused by the use of mph 
for miles per hour but in the modern system of 
units the solidus is again used to mean ‘per’ or 
‘for every’. Consider the following units and how 
replacing ‘per’ with ‘for every’ can be instructive 
in the meaning of the quantity being expressed:

metres per second, joules per second, 
coulombs per second, joules per coulomb, 
kilograms per newton, newtons per square 
metre, and so on.

The first three of these express rates, meaning 
‘for every second’. It is important to understand 
that the universe is changing all the time and 
understanding the rate of change is central to 
physics. Understanding (or at least knowing) that 
speed, for example, is a rate of covering a certain 

distance is the first step towards understanding 
calculus, where rates can themselves be changing. 
Can a student really appreciate that acceleration is 
a rate of change of velocity without understanding 
first that velocity is a rate of change of distance?

The meaning behind formulae

Another use of the solidus is in the mathematical 
formulae that run through any physics syllabus. It 
could be argued that this is just the same as its use 
in units but for the sake of exemplification let us 
consider the formula relating to spring constants.

I find it unhelpful in this context to give the 
formula as F = ke, where F is the force applied 
to the spring, k is the spring constant and e is 
the extension. The formula looks much more 
like a tool for finding force than a mathematical 
explanation of how a spring behaves under 
tension. It looks like something to learn rather 
than something that could aid understanding.

It is more useful to give the formula as:
Fk
e

=

From this arrangement, we can explain that the 
spring constant tells us the force per metre of 
extension or, in the language of units, the number 
of newtons needed for every metre of extension.

Likewise, F = ma is more instructive when 
expressed as

 Fm
a

=

It actually defines inertial mass as the number 
of newtons needed to accelerate that mass for 
every metre per second per second; in effect the 
resistance to acceleration (Penrose, 2004: 392).

The use of the unit of acceleration as metre 
per second per second here is deliberate. In my 
experience, students are better able to understand 
that acceleration is the change in velocity per 
second, i.e. (m/s)/s, or even the change in distance 
covered per second for every second than to 
immediately employ the standard notation of m/s2.

The reader might like to consider the 
following formulae, written intentionally in these 
arrangements, and think about how the language 
used above can help to improve students’ 
understanding of the quantities they represent:

            F W W Q Wg F P I V
m d t t Q

= = = = =
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where g represents gravitational field strength, 
F represents force, W represents work done 
or energy transferred, m represents mass, d 
represents distance moved, P represents power, 
t represents time, I represents electrical current, 
Q represents charge transferred and V represents 
potential difference.

I am not suggesting that all formulae should 
be given in this form. When defining momentum 
as the product of the mass and the velocity it is 
usual to give the formula in the form p = m × v. I 
cannot imagine that giving the students

 pm
v

=

to learn would be advantageous but this is 
because the momentum is defined as the mass 
‘times’ the velocity. However, what advantage for 
understanding is there in giving the speed formula 
as distance travelled = speed × time, as it is in 
the June 2015 Combined Science GCSE Subject 
Content (Department for Education, 2015: 37)? 
Surely

   distance travelledspeed
time

=

is more instructional?
Explaining the meaning behind the formulae 

should help students to learn them; the subject 
content for combined science in England gives 
a list of formulae that students should be able to 
recall (Department for Education, 2015: 37). The 
explanation should also help students to understand 
the formulae as well as help to reduce confusion 
brought about by formulae being presented in 
inconsistent ways. I will return to this point later.

A source of confusion relating to symbolism 
is that the horizontal line dividing the numerator 
and denominator can be thought of as ‘divided by’ 
as well as ‘per’. Checking prior knowledge and 
understanding is central to teaching but how often 
do we, as teachers, check that students understand 
that Q/t is equivalent to Q ÷ t? Do we assume 
that students understand this when introducing 
formulae? Do we check that students are not 
confused when Q/t becomes 10/5 but that to find 
the answer they must carry out the operation 10 ÷ 5?

The fundamental importance of ‘is equal to’

Some thought about the students’ prior knowledge 
and understanding of what we might consider 
to be basic operations and symbolism is as 

worthwhile an activity as is considering prior 
knowledge in any other context. A fundamental 
example is the students’ ‘understanding’ of what 
the equals sign (=) represents.

We consider the equals sign to represent 
‘equals’ and most students will say this when 
asked, but is their understanding of ‘is equal to’ 
demonstrated in their work? How often have we 
seen 4 × 3 = 12 ÷ 6 = 2 when students carry out 
multistep calculations? It either demonstrates a 
misunderstanding of the meaning of ‘is equal to’ 
or it demonstrates a disregard for its importance.

The following conversation with my 6-year-
old son suggests that misconceptions about the 
meaning of the equals sign could well be formed 
at an early age:

Son: Daddy, I know what 10 times 10 equals.

Daddy: That’s great, son . . . tell me.

Son: 100.

Daddy: Well done. What does equals mean?

Son: Makes.

Had I not been writing this article at the time 
I would not have asked the question; I would 
probably have just explored his mathematical 
prowess further. His ‘understanding’ of equals as 
an operator (10 times 10 makes 100) suggests that 
the misconception that many secondary students 
hold could well have been formed many years 
earlier. (My wife teaches 6-year-olds and on 
hearing our conversation reported that she teaches 
her pupils ‘is equal to’ not ‘makes’.)

Promoting the importance of the equals sign 
by limiting its use to one per line can help, as can 
encouraging students to read their equations out 
loud. An example of good practice is shown in 
Figure 3, which many teachers will recognise as 
being ‘the way we used to do it’. Interestingly, 
a student who writes 4 × 3 = 12 ÷ 6 = 2 in a GCSE 
exam (taken by 16-year-olds in England) will 
score full marks for certain awarding bodies 
providing the final answer is correct and despite 
the fact that the mathematical grammar is not. 
Perhaps this means that there is little impetus for 
teachers to correct this type of mistake. I suggest 
that the fundamental misunderstanding that it 
implies means that teachers should correct it.

An understanding of the true meaning of 
the equals sign (as opposed to an alternative 
perception of the sign as an operator or as a 
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symbol that simply separates calculations) is 
essential to students’ understanding of algebraic 
manipulation as well as arithmetic procedures.

Rearranging simple equations

Rearranging equations is a key skill in physics and 
students who have not mastered the art at GCSE 
run into serious difficulties very early on in an 
A-level course.

Once again, it is essential to take into account 
the students’ prior experiences of rearranging 
formulae. Some will have been taught processes 
that lead to no understanding of, or even reference 
to, the rules that apply to algebra. Two such 
examples are ‘formula triangles’ and ‘the magic 
bridge’ (where unknowns are allowed to move 
diagonally through the equals sign ).

I argue that an understanding that allows 
students to transfer their methods between 
formulae, topics and subjects has to be based on 
an understanding of the equals sign. When we ‘do 
something’ to one side of a formula that we fail 
to do to the other side, the meaning of the equals 
sign is violated. This can only be exemplified 
by (at least in the early stages) doing the same 
thing to both sides of a formula or equation such 
that the equals sign maintains its fundamental 
meaning. This process always leads to one side of 
the formula having the same symbol or number 
in both the numerator and the denominator, 
whereupon students must understand that anything 
divided by itself is 1 (not zero!).

One way of stressing the importance of 
maintaining equality on both sides of an equation 
is to substitute some arbitrary values. Consider 
a simple example, m = F ÷ a, which we wish to 
rearrange so that F is the subject.

Multiply both sides by a so that m × a = F ÷ a × a.
Now substitute some arbitrary values, let’s say 

5 = 10 ÷ 2 such that the rearrangement becomes 
5 × 2 = 10 ÷ 2 × 2.

Because the equals sign is so powerful and 
the left-hand side has become 5 × 2, the right-
hand side must be equal to 10; the 2s have 
become redundant. If students choose the values 
themselves, they can see that this general rule 
works for any set of values.

The explicit use of × and ÷ signs above is 
intentional. If students do not understand the rules 
of algebraic manipulation in terms of multiplication 
and division, they are unlikely to understand (and 
therefore won’t be able to transfer) the processes 
that they apply to rearranging a formula written as 

Fm
a

=

I will always demonstrate formula work by 
writing out in full until I am absolutely sure that 
students understand the shorthand:

R = V ÷ I rather than R = V/I,  
and P = V × I rather than P = VI.

It is also worth looking carefully at the ways 
in which awarding bodies represent the formulae 
in different situations and ascertaining whether the 
students will recognise them or not. An example 
of inconsistency is given here from a draft 
GCSE physics specification where operators are 
sometimes included and sometimes not; symbols 
are also mixed with words:

The equations F = m × a and  v u
ta −=  lead to 

the equation  m v
tF ∆

∆=  where m∆v = change in 
momentum. (AQA, 2015: 32)

While students are unlikely to study the 
specification, I would check the formula sheet 
as well as the sample assessment materials 
for consistency and be sure that students 
understand them.

Demonstrate transferability

Most teachers will acknowledge that the curriculum 
is overloaded and that there is insufficient time to 
teach the depth or rigour that we would like. As 

Figure 3  ‘The way we used to do it’? Here the 
student is noting what operation is being performed 
on each line of work. This helps to emphasise the 
importance of the equals sign.
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a result, topics can be taught in isolation, thereby 
reinforcing the compartmentalisation that students 
do so naturally. I suggest that taking the time to 
demonstrate how certain skills are applicable across 
a range of topics can actually save time and help 
students to transfer their learning. Students will not 
do it naturally (in my experience) so they must be 
shown. During a lesson involving rate of change of 
momentum, take time to refer back to the lesson on 
acceleration where the rate of change of velocity 
was studied. Compare the formulae, compare the 
graphs and discuss the similarities, particularly in 
the nature of changes per second.

There are many other opportunities in the 
physics syllabus to refer back to situations or 
topics where certain skills have been applied 
before and this serves as good revision too.

Summary

I am sure that colleagues will recognise most, 
if not all, of the problems discussed so far and 
I hope that putting into practice what I have 
suggested will help students to understand their 
mathematical work better in the sense that they 
can transfer their understanding between topics.

New problems will be encountered with the 
mathematical content of the new GCSEs; in 
particular, the statements that students will be 
required to ‘make estimates’ and ‘make order 
of magnitude calculations’ (Department for 
Education, 2015: 40) give us no clue as to what 
context or level of difficulty these might be. I 
hope that applying the principles summarised in 
Box 1 will help.
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BOX 1  Summary of key points

In order to help students better understand the 
mathematical content of their science and be 
able to transfer skills across subjects we should:
l	 check prior knowledge and understanding of 

notations, symbols and conventions;
l	 demonstrate and provide opportunities for 

students to experience the reasons why 
mathematical processes are the way they are;

l	 demonstrate and provide opportunities for 
students to experience the meaning behind 
mathematical formulae;

l	 highlight the importance of units and how they 
reflect the way that algebraic processes work;

l	 promote the use of one equals sign per line of 
calculations;

l	 demonstrate and encourage algebra written 
out longhand until the students are secure 
with the shorthand;

l	 explore the language behind the mathematics;
l	 refer back to topics where the same 

mathematical processes have already been 
learned;

l	 check formula sheets for consistency and 
ensure that students understand the different 
ways that formulae can be presented to them.
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